
Abstract

This paper presents the architecture, implementation,

and performance results for the SGI Challenge symmetric

multiprocessor system. Novel aspects of the architecture

will be highlighted, as well as key design trade-offs target-

ed at increasing performance and reducing complexity.

Multiprocessor design verification techniques and their

impact will also be presented. The SGI Challenge system

architecture provides a high-bandwidth, low-latency

cache-coherent interconnect for several high performance

processors, I/O busses, and a scalable memory system.

Hardware cache coherence mechanisms maintain a con-

sistent view of shared memory for all processors, with no

software overhead and minimal impact on processor per-

formance. HDL simulation with random, self checking

vector generation and a lightweight operating system on

full processor models contributed to a concept to customer

shipment cycle of 26 months.

1 Introduction

The Silicon Graphics Challenge line of symmetric mul-

tiprocessing computers is designed to provide engineers

and scientists with a powerful set of computational, de-

sign, and visualization tools at aggressive price perfor-

mance levels. Scalability and balance across processor,

memory, and I/O subsystems also makes these computers

attractive to a wide range of high performance computing

applications, from the creation of special effects for the

entertainment industry to database management in the

commercial sector.

This paper begins with an overview of the system pa-

rameters and configurations, then moves directly into pre-

sentation of the coherence protocol, latency reduction

techniques, and bus efficiency mechanisms, with emphasis

on performance impact. The I/O bus and subsystem is later

described, followed up by a discussion of effective design

verification techniques used to reduce the overall product

cycle time. Finally, performance results are presented and

summarized.

1.1 Overview of the coherent interconnect

The heart of any multiprocessor system is its intercon-

nect. The interconnect provides each processor with a path

to memory and I/O, and may also support cache-coherence

and other features. All Challenge multiprocessors use the

POWERpath-2 as a coherent interconnect. The POWER-

path-2 is a fast and wide split transaction bus, which pro-

vides high-bandwidth, low-latency, cache-coherent

communication between processors, memory, and I/O.

Additional features include special transactions for effi-

cient processor synchronization and I/O DMA transfers.

Table 1 POWERpath-2 Overview

● 1.2 Gigabytes per second sustained transfer rate

● 9.5 million transactions per second, sustained

● Snoopy write-invalidate cache-coherence maintained

in hardware

● Multiple outstanding, variable duration split read

transactions

● Independent 256 bit data, 40 bit address busses

● 47.6 MHz synchronous signalling (21 ns cycle)

● ECC protected memory and caches, parity protected

data and address busses

1.2 Available system configurations

Given a flexible, high speed interconnect with fully in-

terchangeable nodes, it is possible to build a wide variety

of custom system configurations. Subsytems can grow in

size along several axes, the limits of which are listed in the

following table.

Table 2 Max system configurations

● 36 MIPS R4400 Processors, 2.7 GigaFlops peak

● 18 MIPS streaming superscalar TFP processors, 5.4

GigaFlops peak

● 16 Gigabytes main memory, 8-way interleaving

● 4 POWERchannel-2 I/O busses, each providing 320

MBytes/sec

Performance optimizations, implementation, and verification of the

SGI Challenge multiprocessor

Mike Galles and Eric Williams

Silicon Graphics Computer Systems

2011 N. Shoreline Blvd.

Mountain View, CA 94039-7311

● 32 fast-wide independent SCSI-2 channels

● 3.0 Terabytes disk (RAID) or 960 Gigabytes disk

● 4 HIPPI channels, 8 ethernet channels

● 5 VME64 expansion buses provide 25 VME64 slots

● 3 Reality Engine high performance graphics systems

2 POWERpath-2 Protocol

The POWERpath-2 protocol was designed with a RISC

philosophy. The types and variations of transactions are

small, and each transaction consumes exactly five cycles

to transfer a single cache block of 128 bytes. Read transac-

tions are split, and independent address and data transac-

tions can occur simultaneously, creating a pipeline effect.

This allows bus performance to be optimized for common

transactions, without requiring additional hardware com-

plexity to handle rare cases.

2.1 Cache Coherency

The cache coherency protocol is identical to the Illinois

Protocol [1], except that cache to cache transfers are only

used for dirty data. Each cache has four states; invalid, ex-

clusive, dirty exclusive, and shared. Transition between

cache states is caused by actions initiated by the processor

or by coherent transactions appearing on the bus. In order

to eliminate unnecessary cache contention between the

processor and the bus snoopy mechanism, a duplicate set

of cache tags [2] is maintained by the processor interface

ASIC. A processor cache will only be accessed for coher-

ency reasons if the data in question actually resides in that

cache; bus traffic targeting lines not cached by the local

processor will not affect the processor or its cache.

Whenever a read request is satisfied by data from a pro-

cessor’s cache, the memory accepts the cache read re-

sponse as a sharing writeback. This mechanism eliminates

Figure 1 Cache coherency state transitions

Invalid

Shared Clean

Dirty

Read, response

not shared

Read, response

shared

Store

 Read on Bus

(provide data)

 Read

on Bus

Bus Initiated

Processor Initiated

Invalidate Rcvd’

Store,

Invalidate

Sent

the need for a shared dirty state, as data is cleaned as it

passes across the bus from cache to cache. [3]

Split read transactions complicate a coherency protocol,

as they are not atomic operations. A read or read exclusive

transaction affects the state and ownership of a line, but

between the read request and read response the precise

owner and state are ambiguous. To avoid this ambiguity,

the POWERpath-2 bus protocol disallows coherent opera-

tions to cache lines which target a pending read. To en-

force this restriction, each bus interface must track all

pending reads, and avoid issuing conflicting requests. To

keep the implementation tractable, a maximum of 8 pend-

ing reads are allowed at any given time.

Pending reads are tracked by being associated with read

resources. When a read request is issued, it occupies the

first available read resource. A pending read will occupy a

read resource until a corresponding read response appears

on the bus. If all read eight read resources are filled, future

read requestors must wait until a read resource becomes

available.

To indicate which read resources are occupied, the

POWERpath-2 bus protocol specifies inhibit signals.

There are eight inhibit signals; one for each read resource.

When a bus node has not yet finished its cache snoop to

satisfy a pending read, the node will drive the inhibit sig-

nal of the read resource which caused the snoop. If the

snoop completes and indicates a clean cache line, the

snooping node will simply drop its inhibit signal and allow

the requesting node to accept memory’s response. If the

snoop indicated a dirty line, the node will request the bus

and provide a read response, then drop its inhibit signal.

2.2 Bus Timing

Bus state sequencing, arbitration, and flow control tech-

niques have a large impact on latency and achievable

bandwidth. Technology restrictions play a key role in de-

termining these aspects of bus design. The POWERpath-2

bus transceivers, for example, do not support high speed

wired OR operations and require a one cycle turn around

time between different drivers. Given these restrictions, a

bus timing protocol was developed which incorporates

multi-level arbitration, flow control, and complete address,

command, and data transfer in a 5 clock transaction.

Every POWERpath-2 bus transaction consists of five

clock cycles. System wide, bus controller ASICs execute

the same five state machine synchronously: arbitration,

resolution, address, decode, and acknowledge. This RISC

approach to bus protocol simplifies the controllers and al-

lows them to operate at maximum frequency with minimal

design risk.

When no transactions are occurring, each bus controller

drops into a two state idle machine. This allows new re-

quests which appear on an idle bus to arbitrate immediate-

ly, instead of waiting for the arbitration cycle to arrive.

Two states are required to prevent different requestors

from driving the arbitration lines on subsequent cycles.

The address and data busses are arbitrated separately to

accommodate split read transactions in a highly pipelined

fashion. While one node is using the address bus to issue a

new read request, another node can use the data bus to pro-

vide a read response to one of several pending reads. Un-

der normal system loads, the memory system can provide

a read response on the data bus 2 transactions after the

read request appears on the address bus. For write re-

quests, address and data appear simultaneously, while in-

validate requests occupy only the address bus. With a

sufficient number of requestors, the bus can sustain the

peak transfer rate of 1.2GBytes/sec.

Because they can act independently, the address and

data busses must be arbitrated for separately. During the

arbitration cycle, the middle third of the address and com-

mand signals is used for address arbitration and the lower

third of the address and command signals is used for data

arbitration. The upper third is used to make URGENT

(high priority) requests. Each bus node asserts the appro-

priate signals to indicate which type of request it is mak-

ing. The arbitration vector is then read into every bus

controller ASIC, where bus winners are determined based

upon a common algorithm and shared bus state. Whenever

possible, requests for the address and data buses are com-

bined for greater bus efficiency. Read requests and re-

Figure 2 Bus state transition diagram

Arbitration Address

Resolution

Acknowledge Decode

At least one

requestor

1

1

1

I

II

III

IVV

no

requestors

1

Read A Read B Read C Read D Read E

Resp. A Resp. B Resp. D

Write F

Invalidate G

Resp C

Address Bus

Data Bus

Time

1 2 1 3

5 cycles

Figure 3 Split read pipelining with write and invalidate traffic

sponses are given higher priority to reduce read latency.

Urgent requests are granted the bus quickly to prevent

starvation. When there are multiple requestors at the same

priority level, a round robin algorithm is used to ensure

fairness.

This scheme of distributed arbitration reduces the over-

all time required to determine a bus winner, and thus re-

duces latency. A central arbitration scheme requires that

all requests be issued to a single chip, which determines a

winner and grants the bus. This requires one additional

transaction over the distributed arbitration scheme, where

the knowledge of which node won the bus is immediately

available to all nodes. Although distributed arbitration

does require more logic to implement, higher gate counts

available in today’s ASICs make this cost low compared to

the benefits of saving clock cycles

The figure below shows a generic timing diagram for

POWERpath-2 bus transactions. The arrows indicate data

bus arbitration in state I, identification through read re-

source tagging in state III, and flow control information

transferred in state V. During state V (the acknowledge cy-

cle), a node is allowed to drive the same 3 address and

command lines it uses for arbitration, allowing the ac-

knowledge and arbitration cycles to occur adjacently with-

out violating the one cycle turn around time required by

the driver technology. These 3 lines are used for address

acknowledge, data acknowledge, and data state (shared

versus exclusive.).

2.3 Minimizing read latency

Memory read latency has one the most direct impacts on

system performance of any design parameter. To achieve

scalability in multiprocessor systems, it is particularly im-

portant that latencies remain low while larger numbers of

processors and IO devices saturate the bus with memory

requests.

Latency reduction techniques implemented in the POW-

ERpath-2 can be divided into two broad categories; tech-

niques which minimize latency for an single processor to

achieve high performance for an individual node, and

techniques which minimize overall system latency to sup-

port scalable multiprocessing.

2.3.1 Memory read response latency

Read latency to an individual processor is minimized by

a number of design features in the processor interface im-

plementation, in the bus protocol design, and in the memo-

ry system design. The numbered features below refer to

the following figure.

1. The logic in the processor interface chips is designed

to anticipate and accelerate read requests. Other trans-

actions, such as writes, suffer increased latency in this

design, but have minimal impact on performance.

2. Arbitration for the POWERpath-2 bus favors read re-

quests over other requests with less sensitivity to la-

tency. Since the POWERpath-2 is designed with split

address and data busses, read requests and read re-

sponses for independent transactions can occur simul-

taneously, as these paths share no common resource.

3. The Challenge memory system uses high speed buff-

ers to fan out addresses to a 576 bit wide DRAM bus.

Fast page mode accesses allows an entire 128 byte

cache line to be read in two memory cycles, while

Cmd

Addr

Data

Inhibit

CMD

A-Arb
D-Arb ADDR

D0

Rsc #

D1 D2 D3

CMD

A-Arb
D-Arb ADDR

Rsc #

D0

Arbit Resolve Address Decode Ack
I II III IV V

Arbit Resolve Address Decode Ack
I II III IV V

State

DAck
State

DAck
State

A-Ack

InhibitInhibitInhibitInhibit

A-AckU-Arb U-Arb

Address Bus

Data Bus

D1 D2 D3

Figure 4 POWERpath-2 bus timing diagram (2 transactions shown)

CPU

WB
Buffer

Addr

arb

Data
Interleaved

Memory

40 bit Address
256 bit Data

CPU clock domain

Bus clock domain
fast
read

342

1

5

Figure 5 Read latency reduction techniques

data buffers pipeline the response to the 256 bit wide

POWERpath-2 data bus. Twelve clock cycles after a

read address appears on the address bus, response data

appears on the data bus.

4. As the data crosses the asynchronous interface into

the processor clock domain, a programmable trigger

register determines when the data buffers can begin

streaming into the processor. Thus, for any arbitrary

processor speed, the trigger register can be set to ac-

cept data in the minimal time.

5. The processor interface contains a writeback shadow

buffer. When the processor encounters a cache miss, it

initiates a read request followed directly by a write re-

quest if the replaced cache line is dirty. While the read

is taking place, the processor interface ASIC accepts

and stores the write data in a special buffer, where it is

kept until the read completes. When the writeback is

finally sent to the bus, it does not interfere with pro-

cessor read requests.

2.3.2 MP System latency reduction

The POWERpath-2 protocol implements a number of

design features to maintain low-latency across a large sys-

tem under heavy load.

● Each processor interface ASIC maintains a complete

set of duplicate cache tags which hold state informa-

tion for each cache line. When a coherent request ap-

pears on the bus, the processor interface ASIC checks

the state in the duplicate tag store. If the state is in-

valid or shared, a proper response is made on the bus

and no request need be sent to the local processor. The

duplicate tags not only prevent processors from re-

ceiving unnecessary external requests, they also lower

the overall read latency because the duplicate tag

lookups to remote processors is much faster than issu-

ing external snoop requests to those processors.

● When a read request appears on the bus, memory im-

mediately initiates a fetch of that cache line. Concur-

rently, any processor interface ASICs which discover

duplicate tags indicating an exclusive cache block

will initiate an intervention request to that processor’s

cache. By initiating both memory and, if necessary,

remote cache accesses simultaneously, it is guaran-

teed that the response will arrive in the shortest

amount of time possible, regardless of where the data

resides.

● Whenever a read request is satisfied by data from a

processor’s cache, the memory system accepts the

processor’s read response as if it were a write request.

Sharing writebacks cause dirty cache blocks to be

cleaned as they move between processor caches. Any

processor receiving a read response from another pro-

cessor’s cache will load the data in a clean state, elim-

inating the need for additional writebacks of that

block.

● The operating system can mark text pages with a spe-

cial attribute. When a processors encounters a miss to

a text page, the processor interface ASIC sees the text

attribute in the read request. Upon receiving the read

response to a text miss, the processor interface ASIC

always loads the data in the shared state. This elimi-

nates the exclusive state for text pages, and avoids fu-

ture intervention requests to the text line, as that line

will never enter the exclusive state.

● If two or more processors issue read requests for the

same cache block, the POWERpath-2 bus protocol al-

lows them to piggyback on the read response. This

means that even though a single read request is issued

to the bus and a single read response is provided, any

number of processors may participate in the transac-

tion by accepting the read response as their own and

indicating that the cache block should be treated as

shared. This feature is targeted at parallelizing com-

pilers, and can significantly reduce read latency dur-

ing synchronization since processors requesting the

block after the first request is made need not wait for

arbitration or memory access delays. Overall bus

bandwidth is also conserved, since several requests

are serviced by a single transaction.

● Each processor interface contains a special resource

register accessible by the user. This register responds

to broadcast increment transactions, which can be

used to accelerate processor synchronization primi-

tives. A join or barrier primitive, for example, can be

implemented with high efficiency, as processors can

communicate their progress through a critical section

with high speed address bus transactions which avoid

expensive cache block transfers. [4]

2.4 Tolerating high bus loads

In a large system, even the fastest memory bus ap-

proaches saturation under heavy loads. In these situations,

it is important that the bus handle saturation gracefully.

Performance should degrade in a linear fashion as opposed

to exponentially, while forward progress must be guaran-

teed and starvation avoided.

Independent address and data busses, multiple outstand-

ing variable latency reads, and a high-bandwidth memory

system allow the POWERpath-2 bus to maintain its peak

data transfer rate. There are also a number of special fea-

tures designed to encourage graceful performance under

heavy loading.

● The POWERpath-2 memory system supports inter-

leaving on cache line addresses. Parallel access to

SIMMs across a 576 bit wide DRAM bus makes it

possible for a single, 2-way interleaved memory

board to supply the full 1.2 GByte/sec bus bandwidth.

This will only occur, however, when read addresses

alternately target even and odd cache blocks. By add-

ing additional memory boards, memory interleaving

can be increased up to 8-way. Combining high inter-

leaving with protocol tolerance for out of order read

responses provides full bandwidth for almost any

memory reference pattern. In addition to increasing

memory interleaving, up to 16 gigabytes of memory

can be added, and will perform at full speed even in

the presence of single bit errors due to in line ECC

correction.

● In order to prevent starvation and guarantee forward

progress for all processes, each node is equipped with

a programmable urgent timer. When a particular node

is unable to issue a request for a specified amount of

time, its bus arbiter automatically raises its priority to

urgent. Once urgent, the node will have high priority

access to bus resources, such as memory and I/O.

● When several nodes simultaneously request a wide

range of data which resides in the cache of a single

processor, it is possible for that processor to become

swamped by external memory references. When this

occurs, the processor is forced to NACK coherent bus

requests until its input FIFOs drain sufficiently. To

help relieve this degenerate case, any processor which

is swamped will assert a “backoff” bus signal. When

this signal is asserted, processors will refrain from is-

suing new coherent requests until either the signal is

de-asserted or until their urgent timer expires. This

feature relieves bus pressure when data hotspotting

occurs in a single processor’s cache.

3 I/O System Architecture

The Challenge POWERchannel-2 I/O system is de-

signed for large, high-bandwidth I/O configurations, while

at the same time supporting very primitive low perfor-

mance devices at a low base cost. In order to support the

base configuration, a narrower bus in the obvious solution.

At 320 MBytes/sec, a single HIO bus can match one quar-

ter of the system bus bandwidth to support a few high per-

formance devices, while its narrower interface is cheap

enough to connect low performance I/O as well at reason-

able cost. Additional HIO busses can be added to the sys-

tem to increase the I/O capacity.

The HIO bus is a 64-bit multiplexed address/data bus

running off the same clock as the system bus. It supports

split read transactions, allowing up to four outstanding

reads per device. All devices connect to the HIO bus

Figure 6 I/O system architecture

Address Data Path

Address
Data

HIO Bus

HIO

Periph.

HIO

SCSI

HIO

VME

HIO

HIPPI

HIO

GFX

Ethernet

Low

B.W. I/O VME6 HIPPI GraphiFast

Wide

SCSI

Addr Map

through a personality interface ASIC. Up to seven person-

ality interface ASICs can be attached to a single HIO bus.

3.1 I/O Bus Protocol

The HIO bus is narrower than the POWERpath-2, but

still supports transfer sizes up to those supported by the

system bus. Rather than require that every transaction han-

dle a full cache line of data, the HIO bus supports several

different transaction lengths. Separate arbitration lines and

implicit flow control in the protocol eliminate most of the

overhead of the multiplexed address data bus. The worst

case sustainable situation is bus saturation by read traffic

only. In this case the protocol overhead is four cycles out

of twenty, delivering 320 MB/s bandwidth out of a possi-

ble 400 MB/s.

The POWERpath-2 system bus uses a distributed arbi-

tration scheme to minimize the latency, whereas the I/O

bus uses a centralized scheme. In the case of I/O, the cen-

tralized scheme was chosen because rather than being a

peer bus, the I/O bus to system bus interface is a central-

ized location for decision making. Also, system latency is

less of a problem in I/O as long as throughput can be

maintained. Arbitration requests and grants are pipelined

to allow full bus utilization so the centralized scheme will

not impact throughput.

HIO interface chips can request the bus for a coherent

DMA read or write to system memory using a 40-bit sys-

tem address, make a request for address translation using

the mapping resource in the system bus interface, or issue

an interrupt or respond to a PIO read. The system bus in-

terface returns DMA read responses and mapping respons-

es and sends out PIOs

Coherency in the system goes as far as the HIO bus.

When a DMA read makes it through the system bus inter-

face it becomes a POWERpath-2 read just like one that a

R G I II III IV V

R G

R G I

Figure 7 generic HIO bus transaction (2 full transactions and a third req/gnt)

Req0 Req1

Op0 Op1 D0 D1 D2

Gnt0 Gnt1

Cycle

Gnt

Bus

Req

D3

Req2

Gnt2

processor would issue. When a DMA write goes out on the

system bus it becomes a special block write transaction

that invalidates copies in all cpu caches. Partial block

DMA transfers are defined for the head and tail of trans-

fers and for primitive low bandwidth devices. Partial

writes must be merged coherently into main memory.

Pipelining the requests and grants with active transac-

tions helps hide the minimum two clock latency from re-

quest to grant and the two clock latency from grant to

transaction. Short transactions, which can be common in

the case of DMA read, can lead to an inefficiency in bus

utilization. If the central arbiter must wait for the transac-

tion op (first cycle of the transaction) before knowing how

long a transaction will hold the bus, then 1 cycle transac-

tion will lead to 2 wasted bus cycles. If the bus were sup-

plying its rated bandwidth consisting entirely of DMA

reads and responses, then a 2 cycle overhead would

amount to 10% performance loss. To solve this problem,

bus requests encode information about the length of the re-

quested transaction so the arbiter can grant the bus again in

the minimum time.

3.2 Flow Control

The only transactions on the bus that need explicit flow

control are the PIO transactions from the system bus inter-

face to the HIO interface chips. All other transactions have

implicit flow control because an HIO interface will not

make a request if it doesn’t have a buffer available for the

response, and the centralized arbiter will not grant the bus

if the system bus interface does not have room to accept

the transaction. In other words, only PIOs can arrive unso-

licited.

The flow control solution chosen is to make PIOs be so-

licited. After reset an HIO interface chip signals its avail-

able PIO buffer space by making a special request type,

the IncPIO. The system bus interface maintains this infor-

mation in one counter for each HIO device. Every time a

PIO is sent, the count is decremented. When a PIO has

been retired, the HIO device issues another IncPIO to in-

crement the count. This helps reduce the latency of PIOs

since they wait in the system bus interface for a minimum

amount of time

Req1

Figure 8 IncPIOs can happen any time the
REQ lines are not being used

Req0Req Req2IncP IncP IncP IncP IncP

3.3 I/O Cache

A very simple fully associative, four line cache handles

the system bus coherency of partial DMA writes from I/O

which can have from 0 to 32 bytes of data. The cache is

used only to keep cache lines within the system coherent

space while the partial data is being merged. This increas-

es system bus efficiency by reducing the number of times

the system bus is used for less than a full block of data.

To keep the design and verification simple, a two state

protocol was chosen. When a CPU reads a line in the I/O

cache, the cache provides data and transitions to invalid. If

a DMA read from the HIO bus hits in the cache, the data is

written back to memory then read in the usual way. While

reads could have used the cache to reduce the impact on

system bus bandwidth, this case was not optimized since

partial DMA operations are infrequent.

3.4 Address Translation

The map ram provides address general purpose address

translation for I/O devices. This is used to map small ad-

dress spaces such as VME24 or VME32 into the 40-bit

system bus address space. In doing so it provides the capa-

bility to scatter/gather I/O virtual addresses into system

physical addresses. Two types of mapping are implement-

ed: one level and two level mapping. One level mappings

simply return one of the 8k entries in the mapping ram. By

convention, each map ram entry maps two megabytes of

physical memory. In the two level scheme the map entry is

a pointer to page tables in main memory. Each 4kB page

has its own map entry so virtual pages can be arbitrarily

mapped to physical pages. A single map entry controls 2

MB address space for two level maps as well. Note that

PIOs face a similar mapping problem when sent to a VME

bus. The VME interface chip handles this translation itself.

4 Design Verification

A primary goal any verification project is to define the

conditions for completion. The nature of design verifica-

tion is that verification will never quite be finished, but

will asymptotically approach completion. To that end it is

Figure 9 I/O cache states

Invalid

Dirty Exclusive

DMA partial

write to memory

(issue memory read)

Read on
System Bus

(provide data)

useful to develop some metrics to measure progress to-

ward full coverage. Additionally, these metrics also pro-

vide insight and ideas into additional areas to be tested.

4.1 Completion Metrics

There were four different metrics that were used to

gauge the progress of verification. The first is that every

functional block be tested with all combination of timing

relationships between inputs. This is confirmed with de-

sign reviews of both the ASIC code and the diagnostic

coverage. The second is that all state to state transitions be

covered in all state machines. Special tools were written to

make these measurements during regression runs. Third,

pseudo-random tests were run through many hours of sys-

tem simulation. Finally, graphs of total bugs found vs.

time should show a knee and plateau as verification com-

pletes.

The functional block coverage is a primary goal for any

verification effort. The most successful tests were those

that run for several iterations, putting the machine into a

known state and varying a single parameter such as the

timing between two opposing transactions. By sweeping

the relative timing through the entire window of interac-

tion you can have some confidence that you have covered

all variations of that particular case.

Testing that all finite state machines have been exercised

is an easy metric to gather, and has good correlation to di-

agnostic coverage. There are three levels of detail which

can be implemented: 1) test that all states are visited; 2)

test that all valid state to state transitions are made; 3) test

that all valid state to state transitions are made and that all

arcs have been covered with all input combinations. Chal-

lenge verification implemented the second strategy. While

it would have been preferable to also include inputs in the

test so that the exact arc taken could be tested, this re-

quired more integration work with our HDL and design

tools than would be justified by its probable benefits.

Another orthogonal technique which is explained in

greater detail in a later section is pseudo random tests with

random interleaving. These tests were treated these as an

insurance policy rather than a cure all. Directed tests were

written to cover the known design space, while pseudo-

random tests tried to find new areas not previously cov-

ered. After a new bug was found by pseudo-random test-

ing, a whole set of directed tests could be defined.

Careful tracking of bugs can provide data showing as-

ymptotic completion of verification. The end of this sec-

tions contains the final plots of bugs versus time. Several

factors are used to interpret the plots. First, one would ex-

pect to find more bugs earlier in the project, and zero or

virtually no bugs at the end. Secondly, there will occasion-

ally be plateaus in the plot, suggesting that it is time to re-

evaluate the test strategy and possibly define new testing

areas. This can give a stair step appearance to the plot. Fi-

nally, verification effort may not be constant vs. time,

which might produce false lulls in the bug rate. If no new

tests are written after bugs are no longer found, it is guar-

anteed that no more bugs will be found.

4.2 Pseudo-random vector generation

Simulating random transaction sequences is a useful

method of generating unanticipated states, but it is often

difficult to determine whether the results of a random

transaction stream are correct. One way to solve this prob-

lem is to generate a series of pseudo-random transactions

which expect a particular memory result upon completion.

[5] By allowing several pseudo-random transaction

streams to execute simultaneously and interact, unantici-

pated states and conflicts can be generated. This method is

used to help verify coherence mechanisms as well as pro-

cessor and memory interfaces. During simulation, a num-

ber of pseudo-random transaction generators inject system

stimulus at processor interface points. Each pseudo-ran-

dom stream or group of streams is allocated interleaved

portions of the address space to avoid data interference.

The address space interleaving is done in eight byte, cache

line, and page boundaries for different regions to encour-

age false sharing as well as simulate traffic interaction pat-

terns between typical unrelated processes. Upon

completion, each transaction generator checks the address-

es it wrote to ensure coherency was not lost. A passive bus

watcher also observes traffic and watches for illegal bus

states or transaction combinations, as well as gathering

bus performance statistics.

Pseudo-random transaction generators are dispatched in

groups of 1 or more, depending on how many processors

the particular transaction generator expects. When a trans-

action generator completes execution on a single processor

or group of processors, those processors are free to be is-

sued additional transaction generators. A resource sched-

uling algorithm allows several groups of transaction

generators execute simultaneously, and as individual pro-

cessors are issued new transaction generators while other

processors continue working with old ones, a large variety

of system states and interactions are generated. Finally, a

transaction frequency biasing matrix can be used to focus

a particular simulation on certain types of transaction in-

teractions.

4.3 Simulating OS loads via light weight

threads

The pseudo-random transaction generation method is an

efficient verification tool because it relies on a light weight

CPU emulator, which is much faster and smaller than a

full CPU model. This is also a pitfall of this technique, for

although the CPU emulator will generate correct transac-

tions, it will never exactly match the behavior of a full

CPU model. To fill this gap in the design verification, sim-

ulations are also run with a full RTL model of the first tar-

get CPU, the MIPS R4400. By using a full CPU model for

some of the simulations, special behaviors and corner cas-

es associated with the processor implementation are un-

covered and tested.

A multiprocessor simulation includes several full CPU

models, which is a large burden on the simulation environ-

ment. With simulation performance hovering around 1 cy-

cle per second, running multiprocessor UNIX is not

feasible. To simulate the behavior of an operating system

with the characteristics of parallel applications, a light-

weight operating system to manage virtual memory and

context switching is used. Once the lightweight kernel is

running, parallel applications can fork, join, and request

shared memory regions via low overhead system calls.

This environment closely approximates system loading in

a typical runtime environment, and is useful to fill the last

holes in coherence design verification.

4.4 Effectiveness of design verification

Design verification played a key role in the success of

the Challenge project. Because the entire system is imple-

mented in ASICs, each bug found after tape out means a

costly chip respin. The high level of integration also poses

difficulties in identifying bugs, as lab instruments only ex-

amine chip interfaces for short bursts of time. These obsta-

cles, combined with the high complexity involved in

implementing the coherence protocols and bus interfaces,

Address Path Data Path
Memory

Address

Data

CPU
Intfc.

CPU
Intfc.

CPU
Intfc.

CPU
Intfc.

Figure 10 System simulation using full RTL CPU
models for design verification

R4400
 RTL
model

R4400
 RTL
model

R4400
 RTL
model

R4400
 RTL
model

Executables,

including the

lightweight OS, are

loaded into the

memory simulator

to be fetched and

executed by the

processors.

require design verification to be as close to perfect as pos-

sible within a very tight schedule.

The Challenge systems first shipped with 12 separate

ASIC designs averaging 80,000 gates each. A total of nine

ASIC spins were required for system functionality. The to-

tal time which elapsed between the beginnings of the first

design specification to systems being shipped to customers

was 26 months. The short product cycle time realized by

the Challenge system was largely the result of an aggres-

sive and thorough design verification effort. Before each

chip was taped out, the bug graph for that chip and sub-

system had to level out in order to minimize the risk of sil-

icon bugs.

5 Performance

Performance benchmarks presented in this paper were

written in Fortran and parallelized with SGI’s PFA paral-

lelizing Fortran compiler. The single, coherent image of

system memory coupled with the symmetric multiprocess-

ing programming paradigm produced excellent perfor-

mance with a minimal amount of programming effort.

0

50

100

150

200

250

300

350

400

450

30 40 50 60 70 80 90 100 110 120

B
u
g
s

Weeks

Bugs Found with Design Verification

Total
CPU

Memory
I/O

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 111213141516 171819202122 232425262728 29303132

M
f
l
o
p
s

Number of Processors

150MHz Challenge Performance

MatMult_1000x1000
NAS_mxm

Linpack_1000x1000
3D_fft_128x128x128
2D_fft_2048x2048

Results shown here were obtained using 150 MHz MIPS

R4400s, the first line of processors available in Challenge.

The system is designed to support several generations of

future processors and I/O devices with straightforward up-

grades, including the MIPS streaming superscalar TFP

processor.

6 Conclusion

The effectiveness and scalability of a multiprocessor re-

lies on its interconnect, while utility and cost effectiveness

come from a balanced design. The SGI Challenge systems

use a high speed shared bus to provide coherent, scalable

connectivity between processors, memory, and I/O. High

performance processors, interleaved memory, and a flexi-

ble high speed I/O bus are balanced building blocks to cre-

ate a variety of system configurations. A RISC design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1 2 3 4 5 6 7 8 9 10 111213141516 171819202122 232425262728 29303132

S
p
e
e
d
u
p

Number of Processors

150MHz Challenge Performance : Speedup

Ideal_Speedup
MatMult_1000x1000

SPECrate_fp92
NAS_mxm

3D_fft_128x128x128
Linpack_1000x1000

philosophy and aggressive verification techniques brought

design concept to product in 26 months, resulting in a sys-

tem which not only benchmarks well, but also solves the

needs of scientific, engineering, and other real applica-

tions.

References

[1] Papamarcos, M., and Patel, J. “A Low Overhead Co-

herent Solution for Multiprocessors with Private

Cache Memories”. In Proceedings of the 11th Interna-

tional Symposium on Computer Architecture. IEEE,

NY, 1984, pp. 348-354.

[2] Archibald, J., and Baer, J.L., “Cache Coherence Proto-

cols: Evaluation Using Multiprocessor Simulation

Model”, ACM Transactions on Computer Systems,

Vol 4, No. 4, Nov 1986, pp. 273-298.

[3] Goodman, J. R., “Using Cache Memory to Reduce

Processor-Memory Traffic”. In Proceedings of the

10th International Symposium on Computer Architec-

ture. IEEE, NY, 1983, pp. 124-131.

[4] Goodman, J.R., Vernon, M.K., and Woest, P.J., “Effi-

cient Synchronization Primitives for Large Scale

Cache Coherent Multiprocessors”. In Proceedings of

the 3rd International Conference on Architectural

Support for Programming Languages and Operating

Systems. IEEE CS Press, Los Alamitos, CA, 1989, pp.

64-73.

[5] Wood, D., Gobson, G., and Katz, R., “Verifying a Mul-

tiprocessor Cache Controller Using Random Test

Generation,” In IEEE Design and Test of Computers,

August 1990, pp. 13-25.

